
www.manaraa.com

Building Reliable Distributed Systems with CORBA

Sean Landis

Isis Distributed Systems, Inc.

Ithaca, NY 14850

scl@isis.com

Silvano Ma�eis�

Dept. of Computer Science

Cornell University

maffeis@acm.org

Abstract

New classes of large-scale distributed applications will

have to deal with unpredictable communication de-

lays, with partial failures, and with networks that

partition. In addition, sophisticated applications like

teleconferencing, video-on-demand, and concurrent

software engineering require a group communication

abstraction. These paradigms are not adequately ad-

dressed by CORBA. CORBA mainly deals with point-

to-point communication and o�ers no support for the

development of reliable applications that exhibit pre-

dictable behavior in distributed systems. In this paper

we present extensions to CORBA which provide group

communication, reliability, and fault-tolerance. We

also describe Orbix+Isis and Electra | two CORBA

object request brokers that support the implemen-

tation of reliable distributed applications and group-

ware.

Keywords: Distributed Systems, CORBA, Object
Groups, Multicast, Reliability, Fault-Tolerance, Or-
bix+Isis, Electra, Isis, Horus

1 Introduction

The object paradigm has successfully been applied to
the design and implementation of graphical user in-
terfaces, application frameworks, device simulators,
and object-oriented databases. Object-oriented pro-
gramming of distributed applications is the next log-
ical step.
Object-oriented distributed programming (OODP)

is a variation of the client-server model. In OODP,
objects encapsulate an internal state and make it ac-
cessible through a well-de�ned interface. Client ap-
plications may import an interface, bind to a remote
instance of it, and issue remote object invocations.
Object-oriented design and implementation of dis-

tributed systems provides many bene�ts. The service
guaranteed by an object is clearly separated from

�Supported by the Swiss National Science Foundation

the technology implementing the service. The pro-
gramming language which was used to implement an
object, the programming libraries, or the underlying
hardware can be exchanged as long as the object sup-
ports its old interface. Because object-oriented dis-
tributed systems allow the interchange of parts, they
tend to evolve more easily.
The OMG CORBA standard [13] permits the de-

sign of open distributed systems in an object-oriented
fashion by providing an infrastructure that allows
objects to communicate independent of the speci�c
programming languages and techniques used to im-
plement the objects [16]. Open systems avoid exces-
sive dependence on a single manufacturer, or on a
certain operating system, hardware, or programming
language, and thus o�er customers freedom of choice.
Development risks are reduced, and enterprises can
choose the components of a distributed system ac-
cording to price/performance criteria.

1.1 Limitations of Present ORB Tech-

nology

The absence of an abstraction which provides multi-
cast requests to groups of CORBA objects in an e�-
cient way greatly complicates the design and imple-
mentation of applications like teleconferencing, work
ow management, and concurrent software engineer-
ing. The present version of CORBA [13] is based
mainly on a point-to-point communication paradigm.
Moreover, CORBA does not adequately support

the implementation of reliable distributed applica-
tions. The behavior of a reliable distributed applica-
tion would be predictable in spite of partial failures
and of partitioned networks. Many real-world appli-
cations have to deal with problems related to partial
failures, but the development of reliable applications
with current ORB technology requires a large amount
of additional work.

1

www.manaraa.com

1.2 Enhancements for ORB Reliabil-

ity

During the past several years we have been designing
and implementing CORBA environments for reliable
distributed applications. The results of our work are
a set of new abstractions as well as Orbix+Isis [7] and
Electra [10] | two object request brokers for reliable
distributed systems. We enhanced the OMA Model
[16] with object groups and virtually synchronous pro-
gram execution.
The rest of the paper is structured as follows. Sec-

tion 2 stipulates requirements for a reliable CORBA
environment. Section 3 deals with the low-level
system support necessary to implement the reliable
CORBA. In Section 4 and 5 we give a brief overview
of Orbix+Isis and Electra. Examples of reliable ap-
plications which can be built with this kind of ORB
will be given in Section 6. In Section 7 we com-
pare our approach with approaches taken in other
projects. Finally, Section 8 summarizes and con-
cludes the paper.

2 Requirements for a Reliable

CORBA

This section describes the features we feel are neces-
sary to support a reliable Common Object Request
Broker Architecture. These features can be provided
by the communication system and can be transparent
to the programmer.

2.1 Object Groups

The reliability of CORBA objects could be increased
by developing an abstraction that manages groups of
distributed objects. This abstraction would shield
programmers from much of the complexity inher-
ent in distributed systems. A researched and tested
method for providing such an abstraction is associat-
ing CORBA objects together in object groups.
An object group is a group of replicated or associ-

ated CORBA objects implementing the same inter-
face. Client communication with an object group is
by reliable multicast. The client program invokes op-
erations via a single object group reference without
knowing the references of the individual objects in
the group.
In CORBA, a client binds to and sends requests to

a single object. With object groups, a client binds to
the group and requests are sent to all members. Ob-
ject group behavior can be transparent to the client:

Server

Object

Replicated

Host A

Server

Object

Replicated

Host B

Server

Object

Replicated

Host C

Client

Object

Object Group

request

reply

Figure 1: Server Implemented as an Object Group

� The application code used to bind to an object
group is the same as for binding to a single ob-
ject.

� The client sends a single request and receives a
single reply, as it would with a single object.

� The object group handles all reliability protocols
automatically so they are invisible to the client.

� By default, the runtime returns only one of mul-
tiple server replies to the client.

If desired, the application programmer can easily
gain access to all server replies. Thus, transparency
is optional.
As will be explained later, object groups provide

fault-tolerance, load sharing, e�cient data distribu-
tion, and object migration. Figure 1 shows an object
group with three member objects.

2.2 Failure Detection

Reliable group computing requires that requests are
acknowledged by all group members. Failure detec-
tion can prevent a client from blocking waiting indef-
initely for responses from failed group members and
clients.
The runtime performs automatic failure detec-

tion without disrupting communication among active
group members. Unresponsive group members are
identi�ed using a time out failure detector which, af-
ter a speci�ed amount of time, will declare an unre-
sponsive member failed. The runtime forwards failure

2

www.manaraa.com

noti�cations to ensure that operational objects have
a consistent opinion on which objects have failed.
With failure detection and propagation of failure

noti�cations, the runtime can transparently maintain
consistency among object group members and can
guarantee multicast request completion.

2.2.1 Active Replication

Active replication is a style of distributed group pro-
gramming which assumes every member of the group
is actively maintaining replicated state. Each object
group member shares the same interface and equiv-
alent implementation semantics to ensure that each
member responds to identical requests in the same
way.
Servers implemented with actively replicated ob-

jects tolerate object, host, and network failures; as
long as one replica is accessible, the service remains
available. Active replication can support load bal-
anced servers and object migration.
Active replica object groups manage group mem-

bership and provide a way for objects joining the
group to be updated and become exact replicas.
Group members use a View to maintain a group-
wide agreement of group membership. State transfer
provides a way for new members to become replicas.
Monitoring enables group members to receive noti�-
cations of group membership changes.

2.2.2 Views

A view is a dynamic list of object references repre-
senting the object group membership. Changes in
group membership trigger the automatic installation
of a new view at each group member. Consistent
group views provide a mechanism for performing re-
liable multicasts to the object group.
When a view is stable, each object (client and

server) sees an identically ordered list of group mem-
bers. Request delivery occurs only when the view is
stable.
Figure 2 illustrates one way that request delivery

to an unstable group can cause application problems.
A client requests a distributed database search. To
speed up the operation, each of the objects in the
group is to search a di�erent portion of the database.
The client sends the request to a group consisting of
objects A and B, but before B receives the request,
C is admitted to the group. A, having received the
request when two objects were in the group, searches
1/2 of the database. B receives the request when
three objects are in the group, and searches 1/3 of
the database. Object C does not receive the request.

Client
A B

R1
C

time 1. Original Group

2. Object C admitted

Figure 2: Disagreement in the View

When results are returned to the client, only 5/6 of
the database has been searched.
View consistency is maintained by controlling when

an object can gain admission to a group. Pending re-
quests are delivered before a new object is admitted.
While an object is being admitted, requests are de-
layed until the view is stable. Figure 3 shows request
delivery to a stable view. R2 is delivered after the
view is stable. View management is performed by
the runtime and is transparent to the programmer.

Client
A B

R1

time 1. Original Group

C
R1Reply

Reply R2
q

R2
R2

2. C must wait for
 admittance

3. R2 is queued
 until view is stable

Figure 3: Delivery to a Stable View

2.2.3 State Transfer

State transfer is a feature that invokes object member
functions to transfer object state from existing object
group members to a new member being admitted to
the group.
State transfer is a key component of active replica-

tion because it allows new objects to join the group
and become exact replicas. Objects join the group
to increase fault-tolerance or when they recover from
failure.
When a new object is admitted to the group, the

runtime system calls the state send member function
on one or more members of the object group. This
function packages state information for the runtime
system which transfers it over the network to the new
member. Upon arrival, the runtime calls the state
receive member function of the new object which uses
the state information to update its state.

3

www.manaraa.com

Group membership changes are not complete until
state transfer has successfully completed. At that
point, the group view becomes stable and pending
requests can be delivered to the group.

2.2.4 Object Monitoring

Monitoring is a feature that allows objects to be no-
ti�ed of changes in object group membership. The
runtime transparently invokes monitoring functions
on an exist group member object when a new mem-
ber object is admitted to the group, or when an ex-
isting member fails or leaves the group. Monitoring
gives group members the option of taking action in
response to group membership changes.

2.3 Communication

For reliability, the communication system must pro-
vide guarantees beyond those provided by traditional
network protocols. These guarantees can be built
upon existing protocols such as TCP/IP.

2.3.1 Request Atomicity

Request atomicity guarantees that requests sent to
object groups will be received by all members or by
none.
Without atomic delivery, replicated objects may

become inconsistent. Figure 4 illustrates how a prob-
lem can arise when a client fails after sending a re-
quest to an object group. Object A receives the
request, but the client fails before its runtime can
send the request to objects B and C. Without re-
quest atomicity, a programmer must �nd a way to
recover from incomplete request delivery.

time

R1

Client
CA B

Figure 4: Incomplete Request Delivery Due to Failure

Atomic request delivery can be implementedwithin
the communication system by having an object that
received the request forward the request to the rest of
the group in case of a client failure (Figure 5). Thus,
all objects receive the request.

time

R1

Client
CA B

A forwards R1

Figure 5: Request Delivery in Spite of Failure

2.3.2 Request Ordering

Most applications using group computing require
some type of request ordering guarantee. Two useful
types of ordering are total ordering and causal order-
ing.

Total Order The order in which requests are deliv-
ered to distributed objects can be compromised by a
variety of delays such as network congestion, operat-
ing system latency, or resource contention. Total or-
dering of requests ensures that multiple requests con-
currently sent to an object group by di�erent clients
will be delivered to every group member in the same
order.
Figure 6 illustrates a potential request ordering

problem. R1 and R2, two update requests to the
same record, are sent by two clients to a group of
replicated objects. Objects A and B receive R1 �rst
and then R2. Because of network latency, object C
receives R2 before R1. In subsequent queries, objects
A and B may behave di�erently than object C.

time

CA B

R1

R2 R1

R1

R2

R2

Figure 6: Unordered Request Delivery

By providing total ordering of requests, consistency
can be maintained for all object group members. Fig-
ure 7 illustrates how requests are delivered in the
same order to all group members.
The runtime delays delivery of R2 to object C

until after R1 is delivered. Total ordering of re-
quests greatly simpli�es the development of repli-
cated servers because the programmer can safely as-
sume that every object in the group receives requests
in the same order.

4

www.manaraa.com

CA B

R1

q

R1
R2

R2 R1

R2

time

R2 is queued to

be delivered

after R1

Figure 7: Totally Ordered Request Delivery

Causal Order Causal ordering ensures that if a re-
quest is potentially dependent upon a prior request,
the previous request is delivered to an object �rst [8].
Causal order is weaker than total order, but incurs
less communication overhead. Causal ordering pro-
vides an important alternative since it is su�cient for
many applications and is less expensive to guarantee
than total ordering. Total ordering requires a delay
for every request while the runtime determines the
ordering of messages. With causal ordering, the de-
lay is only required for requests which are potentially
causally related; unrelated requests can be delivered
immediately.
If causal ordering is not present, a problem can

occur when a causal dependency exists in a chain of
asynchronous requests. In Figure 8, a client sends
R1, requesting a �le update, to object A. The client
next noti�es object B of the update with R2. Object
B sends R3 to access what it believes is the current
�le. But R1 was delayed and has not yet arrived at
object A! Object B is mistakenly accessing the wrong
data.

time
Client A B

R1

R2

R3

Figure 8: Causal Ordering Problem

By maintaining causal ordering, potentially depen-
dent asynchronous requests are processed in the cor-
rect causal order as shown in Figure 9. With causal
ordering, object A is assured of accessing the correct
data because the delivery of R3 is delayed by the run-
time system until after R1 is delivered.

time
Client A B

R1

R2

R3
Q

Figure 9: Causal Request Delivery

2.4 Virtual Synchrony

In virtually synchronous systems all signi�cant e-
vents: the delivery of requests, failure noti�cations,
and group membership changes, appear to occur at
the same time in all processes. Owing to virtual syn-
chrony, the behavior of a distributed application is
predictable in spite of partial failures, asynchronous
communication, and dynamic view changes. Virtual
synchrony relieves programmers of problems such as
handshaking and distributed consensus. The virtual
synchrony model was originally developed in the con-
text of the Isis project [4].
Atomic request delivery, view management, con-

sistent failure detection, and ordering of events are
the building blocks of the virtual synchrony model.
Virtual synchrony simpli�es developing distributed
servers because code can be written as if events oc-
cur within each server at the same time. A request
delivery or a group view change appears to be simul-
taneous at all object group members, even though
more than one action occurs in more than one pro-
cess, and at di�erent times. Our model for reliable
CORBA provides virtual synchrony.

3 System Support

Reliable CORBA needs sophisticated support from
the underlying communication system. The com-
munication system should provide multicast, group
membership management, ordering of events, and
virtual synchrony. Isis [4] and Horus [18] o�er this
kind of support with a C programming interface. Nei-
ther are CORBA compliant, but both can provide a
foundation for a reliable ORB as shown in Figure 10.

3.1 Isis

The Isis ReliableTM Software Developer Kit is the
�rst commercially available environment to provide
virtual synchrony and high performance. Isis en-
ables the implementation of fault-tolerant software

5

www.manaraa.com

Device
Drivers IPC

Threads

Operating
System

Isis or Horus

ORB Core

SII DII ORB BOA

Figure 10: Reliable CORBA.

on loosely coupled hardware through a library of C
functions. Core services include process groups, reli-
able multicast, ordering of events, and failure moni-
toring. Higher level services include a message spool-
ing facility, a distributed resource manager, and a
message publication-subscription layer. Isis runs on
various operating systems including UNIX, Microsoft
WindowsTM, Windows NTTM, and VMS. Orbix+Isis,
presented in the next section, uses Isis as its commu-
nication system.

3.2 Horus

The Horus toolkit, a research project in development
at Cornell University, o�ers exible group communi-
cation support by providing extensively layered and
highly con�gurable protocol objects. Horus allows
applications to pay only for services they use. Groups
with di�erent communication needs can coexist in a
single system.
Horus runs on UNIX and supports communication

protocols such as UDP, Deering-IP, ATM, and Mach
messages. The Electra ORB, presented in Section 5,
runs on both Horus and Isis.

4 Orbix+Isis

Orbix+Isis is the �rst commercially available system
that supports the creation of fault-tolerant CORBA-
compliant applications. Orbix+Isis integrates the
OrbixTM CORBA-compliant C++ development envi-
ronment from IONA Technologies, Ltd., with the
Isis Reliable runtime technology from Isis Distributed
Systems, Inc.

4.1 System Design

Orbix+Isis builds upon the strengths of its compo-
nent products. Orbix provides the advantages of a

CORBA environment: a standard object oriented
programming environment, abstract interface de�ni-
tion, and distributed objects. Isis provides process
groups, view management, state transfer, request or-
dering, and virtual synchrony.
Fault-tolerance and performance aspects of Or-

bix+Isis applications are speci�ed in the Isis Repos-
itory (IsR). The IsR externalizes this information to
allow changes in application behavior without code
modi�cation or recompilation.
Orbix+Isis provides a gentle migration path for Or-

bix applications that need a higher degree of fault-
tolerance. Orbix+Isis features are transparent to the
client program: fault-tolerant object group behavior
does not require modi�cation of client code.
A server implementation class gains fault-tolerant

object group behavior by inheriting from a base class.
Orbix+Isis provides base classes for two styles of ob-
ject groups: Active Replica and Event Stream.

4.2 Active Replica Execution Style

Active Replica object groups provide fault-tolerance
and load balancing through active replication. State
transfer and monitoring are implemented in the base
ActiveReplica class as do-nothing virtual functions.
To support state transfer, the server programmer

overrides a send state and a receive state function.
When a new object joins the object group, the send
state function is called on one or more members to
stream state information onto an Orbix Request ob-
ject which is passed to the function. The Orbix+Isis
runtime delivers the request to the new member and
calls the receive state function which streams infor-
mation o� of the Request object and updates its
state.
The programmer can control which objects send

state by overriding a virtual function which returns
a non-zero value if the object should send state. The
default function always selects the oldest object group
member.
Monitoring is supported in a similar fashion by

overriding two virtual functions. Orbix+Isis calls
the newMember() function when an object joins the
group, and memberLeft() when a member leaves.
The Active Replica execution style object group of-

fers three communication styles: Multicast, Client's
Choice, and Coordinator/Cohort. These styles are
speci�ed on a per operation basis in the IsR. A sin-
gle Active Replica object group can simultaneously
support operations using each communication style.

6

www.manaraa.com

4.2.1 Multicast

The Multicast communication style provides highly
fault-tolerant operations. Every member of the ob-
ject group receives client requests. If the operation in-
terface speci�es a return value, each member replies.
To maintain client transparency, only the �rst reply
is returned to the caller.
The programmer can gain access to all return val-

ues by writing an Orbix smart proxy (a client side
proxy object provides communication support to the
object group). The smart proxy inherits from the de-
fault proxy and adds behavior to process all return
values. Smart proxies can be written by the server
programmer and transparently installed on the client
program.
For each IDL operation there are two member func-

tions on the proxy: one with a standard C++mapping
signature, and another with an extended signature.
The extended signature version consists of CORBA
sequences for the return values, and for all out and
inout parameters.
The default proxy simply returns the �rst value of

each outbound sequence. By writing a smart proxy,
the programmer can use the extended version to ex-
amine the sequences and craft an application speci�c
reply to the caller.
Smart proxies allow a computation to be divided

among group members. The partial results can be
combined upon receipt, and a single answer can be
presented to the client. This type of operation fully
exploits the multiprocessing capabilities available in
a distributed system.

4.2.2 Client's Choice

The Client's Choice communication style is an opti-
mization of the Multicast style for read-only opera-
tions. It invokes the request on only one object in
the group. The Orbix+Isis runtime automatically
chooses a member to receive the request by calling
a client side chooser function. If the chosen mem-
ber fails, the chooser function is automatically called
to choose a new member. The default chooser selects
members round robin, but the server programmer can
register an alternative chooser function.
A query to an actively replicated database would

be more e�cient as a Client's Choice operation since
it is usually faster to send the query to only one mem-
ber.

4.2.3 Coordinator/Cohort

The Coordinator/Cohort style load-balances compu-
tations which are expensive relative to communica-

tion cost. A two-phase protocol chooses a single
member as coordinator. The coordinator performs
the operation and then sends replies to the client and
all other members (called cohorts). Cohorts can use
the reply to update local state.
If the coordinator fails, a chooser function is au-

tomatically called to select a cohort which will be-
come the new coordinator. By default, the chooser
function chooses the oldest member of the group as
coordinator, but the server programmer can register
an alternative chooser function.

4.3 Event Stream Execution Style

Event Stream execution style object groups support
asynchronous requests using a publication/subscrip-
tion paradigm. In this paradigm, a CORBA imple-
mentation is registered with an Event Stream, which
represents a clearing house for publication and sub-
scription. All interface operations are de�ned in
IDL as CORBA oneway operations, and are used by
the client to send asynchronous events to the Event
Stream. The Event Stream holds events and forwards
them to subscriber objects, which are called Event
Receivers, as shown in Figure 11.

Event

Receiver

Event

Receiver

Event

Receiver

Host A

Host B

Host C

Object Group

Event

History

Event

Stream

Event

Log

Client

Object

Client

Object

Client

Object

Figure 11: Orbix+Isis Event Stream

Event Receivers can join or leave groups at will,
and can be con�gured to receive a user-de�ned num-
ber of events from the backlog upon joining the object
group. After the initial receipt of backlog, Event Re-
ceivers will continue to receive events as they arrive
on the Event Stream.
The Event Stream execution style decouples clients

from servers and can provide persistence for events.
Clients typically send events to the Event Stream

7

www.manaraa.com

without knowing or caring if any Event Receivers are
listening. The client may then cease communication,
but the events can be kept by the Event Stream. The
Event Stream can be con�gured to keep an event log
on disk to provide recovery from a total failure of the
stream.
Each member of an Event Stream receives events

in the same order. An Event Stream is managed by
a replicated group whose fault-tolerance parameters
are con�gurable on a per Stream basis in the IsR.
An Event Receiver can checkpoint its position in

the Event Stream and use it as a backlog starting
point for the next join. In this way, an Event Receiver
that has been inactive for a period of time will obtain
all events.

5 Electra

Like Orbix+Isis, Electra [10, 11] is an implemen-
tation of the reliable CORBA presented in Section 2.
Electra is not a commercial product but is being
used to research problems related to the migration
of CORBA objects, state-reconciliation after the re-
pair of a partitioned network, communication over
ATM, and so forth. Electra di�ers from Orbix+Isis
mainly in respect to adaptability of the ORB to var-
ious communication systems, and in the way client
transparency is provided.

5.1 System Design

Electra can run on various toolkits and operating sys-
tems; the current version supports Horus, Isis, and
MUTS [17]. We believe that Electra can be ported
to Amoeba, Chorus, Consul, Transis, and to other
platforms providing multicast and threads, without
much e�ort.
Electra is layered as depicted in Figure 12. The

CORBA Static Invocation Interface (SII), Object
Request Broker Interface (ORB), and Basic Object
Adapter (BOA) are based on the Dynamic Invoca-
tion Interface (DII) which can be seen as the core of
the ORB. The core itself is built atop of a multicast
RPC module supporting asynchronous RPC to both
singleton and group destinations.
It would have been relatively easy to build the mul-

ticast RPC module directly on Horus. Nevertheless,
for the sake of exibility and portability we decided
to base the module on a toolkit-independent veneer,
called the Virtual Machine.
The Virtual Machine interface speci�es operations

for de�ning communication endpoints, for aggregat-
ing endpoints to groups, for asynchronous message

Device
Drivers IPC

Threads

Operating
System

Virtual Machine

Adaptor Object

Horus, Isis, etc.

VOS

Multicast RPC Module

ORB BOADII SII

Figure 12: Electra Architecture

passing, and for creating lightweight processes. The
RPC module and the Virtual Machine communicate
by means of downcalls and upcalls. A Virtual Ma-
chine interface suitable for Horus, Isis, and MUTS, is
described in [11]. VOS is a Virtual Operating System
layer used by applications to interact with the under-
lying operating system in a portable and thread-safe
way. The VOS mainly provides operations for �le and
memory management.
A toolkit-dependentAdaptor Object maps the Vir-

tual Machine interface onto the proprietary API pro-
vided by the underlying toolkit. An Adaptor Ob-
ject encapsulates all of the code which is speci�c
to a toolkit and necessary to support the multicast
RPC module. We call this system-design principle
the Adaptor Model [9]. To port Electra to a new
toolkit, programmers only have to develop an appro-
priate Adaptor Object. Our adaptors for Horus, Isis,
and MUTS comprise less than 1000 lines of C++ code
each.
Electra applications can be recon�gured to run on

another toolkit by simply relinking them with the ap-
propriate Adaptor Object. Recompilation of applica-
tions is not necessary, therefore applications delivered
in binary form can be recon�gured as well.

5.2 Invocation Styles

Electra supports transparent and non-transparent
multicast, as well as synchronous, asynchronous, and
deferred-synchronous requests. All invocation styles
are available both through the static and dynamic
invocation interface.
In transparent mode, an object group appears

to the client to be a highly available singleton ob-

8

www.manaraa.com

ject. In contrast, non-transparent communication
permits programmers to access the individual group
member's results to an invocation. Each CORBA
operation is thus mapped into two di�erent SII
operations, one for transparent and one for non-
transparent multicast. The non-transparent signa-
ture employs CORBA sequences for the arguments
which are passed back to the client, i.e., for the out

and inout arguments, the return value, and for the
CORBA environment object.
The synchronous, asynchronous, or deferred-syn-

chronous invocation style can be selected on a per-
request basis through the CORBA environment ob-
ject which is passed along with every invocation in
Electra. Consider the following IDL interface:

// IDL
interface example f

void op1(in oat i, out oat o);
g;

The following client code demonstrates how the op-
eration can be called in a synchronous, asynchronous,
and deferred-synchronous way:

// C++

// upcall procedure for asynchronous invocation:
void op1 upcall(Float outF, const Environment& env)f

// outF holds the result of the asynchronous
// invocation below.

g

void proc1(example var& ref)f
Float outF;
Environment sync, async, defer;
sync.call type(SyncCall);
async.call type(AsyncCall);
defer.call type(DeferCall);

// Synchronous (blocking) invocation:
ref�>op1(7.3, outF, sync);
// at this point outF holds the result.
: : :

// Asynchronous (non-blocking) invocation:
ref�>op1(7.3, outF, async, op1 upcall);
// outF is unde�ned.The result will be passed
// to the upcall.
: : :

// Deferred-synchronous invocation:
ref�>op1(7.3, outF, defer);
// outF is unde�ned.
// perform local computations : : :
defer.wait(); // suspends the caller only if necessary.
// at this point outF holds the result.

g

The synchronous call suspends the issuing thread
until the reply has arrived. After the call, outF con-
tains the result returned by the server. In case that
the object reference ref is bound to an object group,

the call is suspended only until the �rst member-reply
has arrived. This default behavior can be changed by
the Environment::num replies member function.
In asynchronous mode, the issuing thread is not

suspended and outF remains unde�ned. As soon
as the reply is received by the caller's ORB, the
op1 upcall procedure is started with its own thread
of execution, and with outF as parameter. If the
server has returned an exception it will be assigned
to the Environment parameter of op1 upcall.
The deferred-synchronous call works much like

the asynchronous one. However, by issuing the
wait member on the Environment object, the caller
is suspended until a reply is received from the
server. When wait returns, the outF argument is
de�ned. Thus, the Environment parameter acts like
a \promise" object in that it permits the caller to syn-
chronize with the remote-invocation at a later point,
and thus to overlap communication with computa-
tion.
The next code fragment demonstrates transparent

and non-transparent multicast. By using CORBA se-
quences in place of an operation's out, inout, and
Environment arguments, programmers gain access
to all replies from individual group members. Non-
transparent multicast allows group members to per-
form di�erent tasks.

// C++

void proc2(example var& ref)f
Float outF; FloatSeq outFSeq;
Environment sync; EnvironmentSeq defer;
sync.call type(SyncCall);
defer.length(1);
defer[0].call type(DeferCall);
defer[0].num replies(MAJORITY);

// transparent multicast (as in proc1):
ref�>op1(7.3, outF, sync);
: : :

// non-transparent, deferred-synchronous multicast:
ref�>op1(7.3, outFSeq, defer);
// local computations...
defer[0].wait();
// outFSeq now contains the replies of
// a majority of the members:

for(ULong i =0; i < outFSeq.length(); i++)f
// do something with outFSeq[i]

g
g

5.3 The Electra BOA

Creating object groups as well as joining and re-
moving objects from groups is accomplished by spe-
cial Electra operations which were included into the
CORBA Basic Object Adapter (BOA) interface:

9

www.manaraa.com

// C++

class BOA f
public:

// Standard BOA-interface. See OMG doc. 94-9-14:
Object ptr create(const ReferenceData&,

InterfaceDef ptr, ImplementationDef ptr);
void dispose(Object ptr);
: : :

// Electra-speci�c operations:
static void create group(Object ptr group,

const ProtocolPolicy& policy
=default protocol policy,

Environment ptr =0);
void join(Object ptr group, Environment ptr =0);
void leave(Object ptr group, Environment ptr =0);
static void destroy group(Object ptr group,

Environment ptr =0);

virtual void get state(AnySeq& state,
Boolean& done, Environment ptr env);

virtual void set state(const AnySeq& state,
Boolean done, Environment ptr env);

virtual void view change(const View& newView);
g;

The BOA::create group member function creates
a new object group and binds the object-reference
group to it. The policy argument is used to tell the
underlying toolkit what kind of multicast protocol to
employ, e.g., for total ordering or causal ordering. On
Horus, the programmer can specify ATM as transport
layer and pick from a variety of ordering protocols to
be placed atop the ATM layer.
Objects in the network join or leave a group

simply by retrieving the group reference from the
name server and by issuing the join or leave

member function with the reference as parameter.
The destroy group member function irrevocably de-
stroys an object group. Note that the group members
themselves are not destroyed.
When an object joins a non-empty group, Electra

obtains the internal state of some group member by
invoking its get state member. Subsequently, Elec-
tra transfers the state to the newcomer and invokes
the newcomer's set state member. A large state
can be transferred in fragments. For this purpose,
Electra continues to invoke the state transfer func-
tions until the done return argument of get state

becomes TRUE. The Environment object is used to
signal an interrupted state transfer due to a com-
plete failure of the group from which the state was
being received. An object's state is represented as a
sequence of CORBA Any objects. The programmer
writes application-speci�c get state and set state

member functions.
The view change member function of an object is

invoked whenever another object joins or leaves the
group. The newView object contains information on

the new cardinality of the group as well as the object-
references of the group members.

6 Examples

This section describes two applications whose devel-
opment is considerably simpli�ed by reliable COR-
BA. The �rst example shows how a replicated direc-
tory server can be implemented. The second example
deals with a reliable stock exchange ticker.

6.1 A Fault-Tolerant Directory Ser-

vice

Consider a replicated directory service speci�ed by
the following CORBA IDL declaration:

interface directory f
// Register an entry under a key.
void insert(in string key, in any entry)

raises(ENTRY EXISTS);
// Retrieve an entry by key.
void lookup(in string key, out any entry)

raises(NO SUCH ENTRY);
// Remove the entry with key.
void remove(in string key, out any entry)

raises(NO SUCH ENTRY);
g;

This interface declares a directory object which
maintains entries consisting of a string and an any

object. To provide a fault-tolerant replicated service,
two criteria must be met:

1. All directory objects must be updated identi-
cally. This is accomplished by atomic request
delivery and totally ordered request multicast.

2. When a new directory object joins a group it
must be able to replicate the state of the objects
already in the group. This is accomplished with
view change detection and state transfer.

Without reliable extensions to CORBA, this type
of application is extremely di�cult to write. Al-
though CORBA does support a kind of multicast
capability1, it does not address the vital issues of
atomicity, ordering, state transfer, or view manage-
ment.
Without atomicity and ordering there is no way

to ensure consistent replicated state across all di-
rectory objects. Without state transfer new objects
have no way to become replicated. Finally, without
view management, none of the other mechanisms are
possible.

1through the send multiple requests DII operation.

10

www.manaraa.com

Given the above interface declaration, the IDL
compilers of Orbix+Isis and Electra generate a set of
C++ �les containing the static invocation interface of
the directory, the invocation stubs, and a �le con-
taining a skeleton of the service with one C++ mem-
ber function per operation declared in the interface.
This �le also provides a skeleton for the state trans-
fer member functions of the directory object which
can be completed by the programmer as follows (in
Electra syntax):

// C++

void im directory::get state(AnySeq& state, : : :)f
// Pack all directory entries into the "state" object:
for(ULong i =0; i < 2 � keys.length(); i += 2)f

state[i] <<= keys[i/2];
state[i+1] <<= entries[i/2];

g;
g;

void im directory::set state(const AnySeq& state, : : :)f
// Unpack the received directory entries.
// First we must clear "keys" and "entries":
keys.length(0); entries.length(0);
for(ULong i =0; i < state.length(); i += 2)f

state[i] >>= keys[i/2];
state[i+1] >>= entries[i/2];

g;
g;

To increase the degree of fault-tolerance of a
directory service, a directory object implemen-
tation is created and joined to the respective direc-
tory object group. The get state member function
of a group member is automatically invoked by the
ORB, the state object is marshaled, transferred to
the newcomer, unmarshaled, and passed to the new-
comer's set state member function. Owing to to-
tally ordered multicast and to virtual synchrony, the
internal states of the group members remain consis-
tent in spite of membership changes and crashes, and
despite client applications creating and removing en-
tries from the service while membership changes are
occurring.
To migrate a directory object, a new group is

created and the object joined to it. Then, a new
directory object is created on the destination host
and joined to the group. The state of the obsolete ob-
ject is automatically copied to the new object and the
two directory objects will run synchronized. Now,
the obsolete object can simply be destroyed.

6.2 A Reliable Stock Exchange Ticker

Application

The next example deals with a reliable stock exchange
ticker service that supplies timely stock market infor-
mation to an unlimited set of receivers. The ticker

service obtains stock quotes from one or more ex-
ternal data feeds and multicasts them to a group of
receivers that have subscribed to the service. A re-
ceiver can be represented by following CORBA IDL
interface:

// IDL
interface ticker f

oneway void �rstQuote(in string symbol,
in string date, in long time, in oat price);

oneway void nextQuote(in string symbol,
in string date, in long time, in oat price);

oneway void lastQuote(in string symbol,
in string date, in long time, in oat high,
in oat low, in oat close, in oat volume,
in oat priceVol);

: : :

g;

The firstQuote operation serves to submit the
�rst quote of the day for a given stock. symbol rep-
resents the ticker symbol, e.g., "IBM", "MSFT", or
"AAPL". To submit an individual quote, nextQuote
is invoked. The lastQuote operation is invoked in
order to submit the last quote of the day, where high
contains the highest quote of that day, low the low-
est, and close the last quote. volume provides the
number of shares traded during the day, priceVol
the price per volume product. As depicted in Fig-
ure 13, an Event Stream object group (Section 4.3)
is used to transport the quotes. This ensures that:

� the communication infrastructure does not be-
come a single point of failure. For the sake of
fault-tolerance, the Event Stream service is im-
plemented by a replicated group.

� receivers can access a prede�ned backlog of past
quotes. When a trader starts his ticker, he will
be presented with the backlog. This mechanism
also supports the disconnected operation of mo-
bile laptop computers.

� all receivers obtain the same quotes in exactly
the same order, which is made possible by reli-
able, totally ordered group communication.

� information feeds as well as receivers can join and
leave the system dynamically without a�ecting
the other receivers or the consistency of the data.

� the quotes are sent to the receivers by object
group invocations, which can be transmitted by
a protocol such as IP-Multicast [2] to ensure scal-
ability and good utilization of the available net-
work bandwidth.

� the programming e�ort necessary to ensure reli-
ability of the ticker service is kept at a minimum.

11

www.manaraa.com

E v e n t S t r e a m

Receivers Object Group

External Feed #1 External Feed #2

Data Feed Coordinator/Cohort Group

(ORB Bridge) (ORB Bridge)

Figure 13: Reliable Stock Exchange Ticker

The data feed is provided through a coordina-
tor/cohort object group (Section 4.2.3). Each mem-
ber of the coordinator/cohort group has access to a
di�erent feed providing the same quotes, but only
the coordinator of the group will transmit the quotes
through the Event Stream. When the coordina-
tor fails, a new coordinator is automatically elected
and the transmission of the quotes is promptly re-
sumed. Using a coordinator/cohort group ensures
fault-tolerance of the feed and that each quote is ob-
tained and transmitted only once.
The coordinator object injects quotes into the

stream by simply invoking the Event Stream oper-
ations declared in interface ticker. For instance:

�rstQuote("IBM", "950613", 765101, 91.250);
nextQuote("IBM", "950613", 765102, 91.250);
nextQuote("IBM", "950613", 765103, 91.125);
nextQuote("IBM", "950613", 765104, 91.750);
: : :

lastQuote("IBM", "950613", 870233, 92.250,
90.875, 91.750, 2905.0, 266.5337);

Logging of events, multicast, and fault-tolerance
are provided by the underlying Event Stream and
Coordinator/Cohort frameworks. CORBA object re-
quest brokers like Orbix+Isis and Electra o�er the
fundamental system support for this kind of appli-
cation, namely object groups, reliable multicast, and
virtual synchrony.

7 Related Work

In this section we give a brief comparison of our
approach with approaches taken in other object-
oriented systems.

7.1 ANSA Interface Groups

An interface group abstraction was added to the Ad-
vanced Network Systems Architecture (ANSA) plat-
form [14]. The interface group abstraction permits
multicast of ANSA operations and groupmembership
management. Similar to Electra, ANSA supports a
transparent and a non-transparent group invocation
style. Programmers can select between FIFO and
total ordering of the multicasts delivered to group
members.
The current implementation of the facility is very

straightforward. In order to maintain total order-
ing and to perform group management, multicasts
are channeled through a group member acting as se-
quencer of the group. A sequencer can become a per-
formance bottleneck and represents a single point of
failure. Multicast is realized by the repeated use of
single messages and not by exploiting a hardware or
software multicast facility where available. In con-
trast, Orbix+Isis and Electra employ fault-tolerant,
distributed protocols to provide ordering and to per-
form group management2. Other di�erences are that
ANSA is not CORBA compliant and does not ensure
virtually synchronous program execution.

7.2 Arjuna, Avalon

Many of today's OODP environments o�er atomic
transactions in order to ensure consistency between
distributed data objects. Two well known examples
are Arjuna [15] and Avalon-C++ [5]. Such systems
are well suited for applications which need to main-
tain consistency for long-lived shared data objects.
When a failure occurs, transactions are aborted and
partially completed operations are rolled back. Of-
ten, aborted transactions can be restarted only when
the defect has been repaired, which can cause client
applications to be suspended for a long time.
In contrast, Orbix+Isis and Electra are well suited

for applications that require high availability and can-
not tolerate long delays, for example fault-tolerant
client-server applications and groupware. For this
kind of application, active replication, non-blocking
communication, and virtual synchrony can lead to in-
creased performance. For a comparison of the virtual
synchrony and the transactional model refer to [3, 6].

7.3 COSS Server Group

It has recently been proposed that group communi-
cation and fault-tolerance be added to CORBA by
incorporating a Server Group abstraction into the

2see [4] for details.

12

www.manaraa.com

OMA [1]. An extension of the OMG Common Ob-
ject Services [12] has been suggested for that purpose.
The proposed group management API is similar to
the Electra BOA operations described in Section 5.3.
Similar to Orbix+Isis, conglomeration functions can
be provided which combine results from all group
members into a single response for the client.
A Server Group service works as follows: Upon

receiving a multicast request, the client's ORB dis-
patches it to the Server Group object. The Server
Group object invokes a user-de�ned decomposition
function to produce a set of subservice requests, and
the group members are subsequently invoked. The
Server Group object awaits the replies, combines
them via a user-de�ned result combination function,
and returns the result to the client.
Compared to our work, the advantage of the Server

Group abstraction is that it can be added to an ex-
isting ORB without having to modify it. The dis-
advantages are that a Server Group object can be-
come a performance bottleneck and a single point of
failure, and that virtual synchrony is at best guaran-
teed between the members of a group but not in the
whole application. Moreover, coherent membership
management and state transfer are not addressed in
the proposal, which makes the development of fault-
tolerant objects di�cult. Nevertheless, the Server
Group abstraction is valuable for systems which do
not require full virtual synchrony, e.g., certain group-
ware applications or parallel queries among indepen-
dent databases.
Our approach is based on the realization that reli-

ability is guaranteed only when the ORB is built on
a communication system that implements the virtual
synchrony model, since all communication must pass
through the system. This means that reliability and
fault-tolerance cannot simply be \added" to an ORB
by means of a Common Object Service.

8 Conclusions

The present version of CORBA does not specify ab-
stractions for the implementation of distributed ap-
plications whose behavior must be predictable in
spite of partial failures, partitioned networks, failed
communication links, and asynchronous communica-
tion. Process groups and virtual synchrony, on the
other hand, provide the basis to build reliable and
fault-tolerant distributed systems. Toolkits like Isis
and Horus implement the process group and virtual
synchrony paradigm, however, their APIs are propri-
etary and rather low-level.
To combine the bene�ts of CORBA and of the vir-

tual synchrony paradigm, we suggest that a CORBA
object request broker should be based on a toolkit like
Isis or Horus. We believe that the combination of the
group communicationmodel with the CORBA model
will lead to a compelling programming paradigm for
future distributed systems.
We described how to enhance CORBA in order

to achieve reliability and to support e�cient one-to-
many interaction with the abstraction of an object
group. An object group permits the programmer to
treat a collection of CORBA objects as if they were a
single entity, and clients invoke operations on object
groups without needing to know the exact member-
ship of the group. Members of an object group have
a consistent view of which objects are in the group.
Coherent failure noti�cation as well as state transfer
are provided.
We also presented Orbix+Isis and Electra, the �rst

two CORBA object request brokers to support the
enhanced model. Application areas of our technology
are the replicated directory service and the reliable
stock exchange ticker outlined in Section 6, video-
on-demand, groupware, distributed multimedia, and
various kinds of fault-tolerant client/server applica-
tions.

References

[1] Adler, R. M. Group-Oriented Coordination
Extensions to OMG's OMA/CORBA. Object
Management Group presentation, San Jose, CA,
June 26{29, 1995.

[2] Baker, S. Multicasting for Sound and Video.
Unix Review (Feb. 1994).

[3] Birman, K. P. Integrating Runtime Consis-
tency Models for Distributed Computing. Tech.
Rep. 91-1240, Department of Computer Science,
Cornell University, July 1993. To appear in Jour-
nal of Parallel and Distributed Computing.

[4] Birman, K. P., and van Renesse, R., Eds.
Reliable Distributed Computing with the Isis

Toolkit. IEEE Computer Society Press, 1994.

[5] Eppinger, J. L., Mummert, L. B., and

Spector, A. Z. Camelot and Avalon. Morgan
Kaufmann Publishers, Inc., 1991.

[6] Guerraoui, R., and Schiper, A. Transaction
Model vs. Virtual Synchrony Model: Bridging
the Gap. In Distributed Systems: From Theory

to Practice, Lecture Notes in Computer Science.
Springer-Verlag, 1994.

13

www.manaraa.com

[7] Isis Distributed Systems, Inc., Iona Tech-
nologies, Ltd. Orbix+Isis Programmer's

Guide, 1995. Document D071-00.

[8] Lamport, L. Time, Clocks and the Ordering
of Events in a Distributed System. Communica-
tions of the ACM 21, 7 (July 1978).

[9] Maffeis, S. A Flexible System Design to Sup-
port Object-Groups and Object-Oriented Dis-
tributed Programming. In Proceedings of the

ECOOP '93 Workshop on Object-Based Dis-

tributed Programming (1994), Lecture Notes in
Computer Science 791, Springer-Verlag.

[10] Maffeis, S. Adding Group Communication
and Fault-Tolerance to CORBA. In Proceed-

ings of the 1995 USENIX Conference on Object-

Oriented Technologies (Monterey, CA, June
1995), USENIX.

[11] Maffeis, S. Run-Time Support for Object-

Oriented Distributed Programming. PhD thesis,
University of Zurich, Department of Computer
Science, 1995.

[12] Object Management Group. Common Ob-

ject Services Speci�cation Volume I. OMG Doc-
ument 94-1-1.

[13] Object Management Group. The Common

Object Request Broker: Architecture and Speci�-

cation, 1995. Revision 2.0.

[14] Oskiewicz, E., and Edwards, N. A Model
for Interface Groups. Tech. Rep. AR.002.01,
ANSA, Architecture Projects Management Lim-
ited, Cambridge UK, 1993.

[15] Shrivastava, S. K., Dixon, G. N., and Par-
rington, G. D. An Overview of the Arjuna
Distributed Programming System. Computing
Laboratory, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK.

[16] Soley, R. M. Object Management Architecture

Guide. Object Management Group. OMG Doc-
ument 92-11-1.

[17] van Renesse, R. A MUTS Tutorial. MUTS
Documentation, Cornell University, 1993.

[18] van Renesse, R., Birman, K. P., and Maf-

feis, S. Horus: A Flexible Group Communi-
cation System. Communications of the ACM

(1996). (to appear).

14

